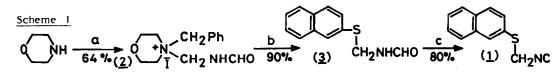
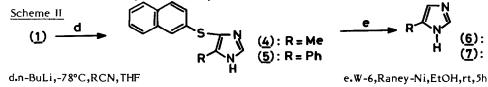
CONVENIENT SYNTHESIS OF 2-THION APHTHYLMETHYL ISOCYANIDE : A USEFUL REAGENT FOR METHYL ISOCYANIDE TRANSFER

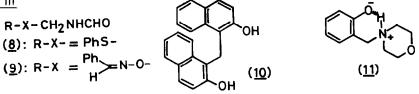

S. Ranganathan^{*} and W.P. Singh

Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India.


ABSTRACT : The crystalline 2-thionaphthylmethyl isocyanide (1), prepared from the novel N-(formamidomethyl)-N-benzyl morpholinium iodide (2), via transfer of elements of CH₂NHCHO, is totally devoid of pervasive odour. The cyclo-addition of the conjugate base of (1) to nitriles followed by desulfurization, under very mild conditions, provides an attractive route to imidazoles.

The cyclo-addition of arylthiomethyl isocyanide conjugate bases to nitriles constitutes an attractive route to imidazoles.¹ During endeavours to use this reaction for transformations in the peptide domain, we realized a major shortcoming of either PhSCH₂NC or p-CH₃C₆H₄SCH₂NC. They were noxious and evil smelling liquids.² The present communication reports on a satisfactory solution to this problem and endeavours to recommend the use of 2-thionaphthylmethyl isocyanide (<u>1</u>) for such cyclo-addition reactions.

The preparation of (<u>1</u>) envisaged the transfer of a formamidomethyl unit from (<u>2</u>) to 2-thionaphthol.³ The reagent (<u>2</u>), mp 156°C⁴, was prepared from morpholine in an overall yield of 64%⁵ and the transfer to 2-thionaphthol achieved in 90% yields. The resulting 2-thionaphthylmethyl formamide (<u>3</u>), mp 63°C, was converted to (<u>1</u>), mp 75°C in 80% yields (Scheme 1).⁶ The most attractive feature of (<u>1</u>) is the absence of the highly disagreeable and pervasive odour associated with the earlier isocyanides and, in our opinion, the procedure for (<u>1</u>) reported here⁷ from the overall view point of yields, simplicity, convenience of work-up⁶.



a.i. formalin, HCONH₂ ii. PhCH₂I,CHCl₃ b.2-thionaphthol,Et₃N,PhH c.PPh₃,CCl₄,Et₃N,CHCl₃ The efficacy of (<u>1</u>) for the transfer of elements of CH₃NC has been established, via cyclo-addition of the conjugate base, generated with n-BuLi at -78°C, to CH₃CN and PhCN, leading to respectively, 4-thionaphthyl-5-methyl imidazole (<u>4</u>) and 4-thionaphthyl-5-phenyl imidazole (<u>5</u>), in 95% and 64% yields.⁸ Compounds (<u>4</u>) and (<u>5</u>) were desulfurized to 4(5)-methyl imidazole (<u>6</u>,73%) and 4(5)-phenyl imidazole (<u>7</u>,56%).^{1,9} We feel that the methodology presented here is the most attractive for imidazole synthesis via cyclo-addition (Scheme II).¹⁰

The transfer from (2) to PhSH results in a 72% yield, of $(\underline{8})^{12}$ which represents a substantial improvement.¹¹ In the case of oxygen acceptors such as benzaldoxime, 2-naphthol and phenol, the transfer experiments resulted in the isolation of compounds (9) (76%), (10) (74%) and (11) (10%).¹² Whilst the formation of (9) represents the expected transfer, the formation of (10) and (11) can be understood on the basis of acceptance of intermediates arising from fragmentation of (2).

Scheme III

REFERENCES AND FOOTNOTES

- 1. A.M. van Leusen and J. Schut, Tetrahedron Lett., 285 (1976).
- 2. In the early part of our work when we used PhSCH₂NC and pCH₂C₆H₄SCH₂NC, the entire laboratory was covered with extremely unpleasant oddur which took some efforts to dissipate. Some colleagues even complained of illness.
- 3. For a similar strategy see D. van Leusen, P.H.F.M. Rouwette and A.M. van Leusen, J.Org.Chem., 46, 5159 (1981).
- 4. Satisfactory analytical results have been obtained for all compounds.
- 5. (2) : Add formalin (400 mmol) to stirred morpholine (400 mmol) + HCONH₂(400 mmol) (20°C; 0.5 h). After 12 h, rt, concentrate (in vacuo), saturate with NaCl, extract with CHCl₂(3x100 ml), dry, evaporate to yield N-formamidomethylmorpholine (12,90%), which is used as such for alkylation. Add PhCH₂I(220 mmol) to ice cold (12) (152 mmol) in dry CHCl₃(100 ml); refrigerate 2 d; white crystals of (2) (71%), mp 156°C.
- An alternate procedure for (1) and (3), which became available to us after completion of the present work, starts with the commercially obtainable TosCH₂NHCHO:2-Naphthyl SH + TosCH₂NHCHO-(DMF/NaH)→ (3) (88%, mp 62.5-63.5°C)-(POCl₂/Et₂N)→ (1) (75%, mp 76-78°C) (A.M. van Leusen, J. Wildeman, J.M. Moskal and A.W. van Hemert, Recl. Trav. Chim. Pays-Bas, 104, 177 (1985); Chem. Abstr., 104, 148443h (1986).
- 7. (1) : Reflux, 6 h under $N_{23}(2)$ (20 mmol) + 2-thionaphthol (20 mmol) + Et₂N(20 mmol) in dry PhH (50 ml). Wash with cold 2N HCl(3x15, 45 ml), H₂O(50 ml), dry, evaporate, chromatograph on silica gel and elute (PhH:EtOAC::1:1) to give (37 (90%) mp 63°C [ir:v (KBr) cm⁻ 3310,1680,1530; nmr: δ (CDCl₃) 4.5(d,J=7Hz) + 4.7(d,J=7Hz) 2H, in the ratio 7.5*72.5 possibly arising from HN-CHO π barrier); 6.23(br, 1H), 7.3-8.1(m, 8H); ms:m/z 217(M⁺)]. Under N₂, reflux 8 h, solution of (3) (20 mmol) + Ph₃P(24 mmol) + dry CCl₄(2 ml) + Et₃N(3.5 ml) fn dry CHCl₃(50 ml), evaporate₂ chromatograph over silica gel and elute (PhH) to give (1) (80%); mp 75°C; ir: v_{max} (KBr) cm⁻ 2140; nmr: δ (CDCl₃) 4.6(2H), 7.4-8.1(m,7H); ms:m/z 199(M⁺).
- 8. (4) : mp 190°C; nmr: δ (CDCl₃ + DMSO-d₆) 2.25(s,3H), 7.05-7.95(m,9H); ms:m/z 240(M⁺). (5) : mp 223°C;ms:m/z 303(M⁺+ 1).
- 9. Stir, rt, 5 h, a solution of 1 mmol of (4) or (5) in dry EtOH (20 ml), with freshly made Raneynickel W-6(1g) filter, evaporate, chromatograph and elute (EtOAC:MeOH::95:5) to give, (6), (73%), mp 45°C, or by preparative tlc (developer EtOAc) to yield (7) (56%), mp 126°C. The mp and nmr of (6) and (7) were identical to that reported (The Aldrich Library of NMR Spectra, 2, 485D, 487D).
- Adducts (4) and (5), because of the presence of bulky S-aryl moiety, would undergo regiospecific N-alkylation, thus providing an attractive route to scarce N-protected 5-substituted imidazoles.
- 11. H. Bohme and G. Fuchs, Chem.Ber., 103, 2775 (1970).
- 12. (8) : liquid (mp 32°C); ir: v (neat) cm⁻¹ 3320,1690,1540; nmr: ô(CDCl₂) 4.6(d,J=7Hz,2H),
 7.3(m,6H), 7.9(br,1H). (9):mp 60°C; ir: v (KBr) cm⁻¹ 3290,1660,1520; nmr: ô(CDCl₂) 5.22(t,2H),
 6.7(br,1H), 7.3-7.7(m,5H), 8.1(d,1H), 8.25(s,1H); ms:m/z 178(M⁺). (10) mp 196°C (lit.202°C,
 W.J. Burke, M. Kolbezen and W. Stephens, J.Am.Chem.Soc., 74, 3601(1952). ms:m/z 300(M⁺).
 (11): mp 90°C; nmr: ô(CDCl₃) 2.5(m,4H), 3.7(m,6H), 6.6-7.4(m,4H), 8.3(br,1H); ms:m/z 193(M⁺).

(Received in UK 1 February 1988)